
Context-Aware Conversational Developer Assistants

Nick C. Bradley
Department of Computer Science

University of British Columbia

Vancouver, Canada

ncbrad@cs.ubc.ca

Thomas Fritz
Department of Informatics

University of Zurich

Zurich, Switzerland

fritz@ifi.uzh.ch

Reid Holmes
Department of Computer Science

University of British Columbia

Vancouver, Canada

rtholmes@cs.ubc.ca

ABSTRACT
Building and maintaining modern software systems requires devel-

opers to perform a variety of tasks that span various tools and infor-

mation sources. The crosscutting nature of these development tasks

requires developers to maintain complex mental models and forces

them (a) to manually split their high-level tasks into low-level com-

mands that are supported by the various tools, and (b) to (re)establish

their current context in each tool. In this paper we present Devy, a

Conversational Developer Assistant (CDA) that enables developers

to focus on their high-level development tasks. Devy reduces the

number of manual, often complex, low-level commands that devel-

opers need to perform, freeing them to focus on their high-level

tasks. Specifically, Devy infers high-level intent from developer’s

voice commands and combines this with an automatically-generated

context model to determine appropriate workflows for invoking low-

level tool actions; where needed, Devy can also prompt the developer

for additional information. Through a mixed methods evaluation

with 21 industrial developers, we found that Devy provided an in-

tuitive interface that was able to support many development tasks

while helping developers stay focused within their development envi-

ronment. While industrial developers were largely supportive of the

automation Devy enabled, they also provided insights into several

other tasks and workflows CDAs could support to enable them to

better focus on the important parts of their development tasks.

CCS CONCEPTS
• Software and its engineering→ Integrated and visual develop-
ment environments;

KEYWORDS
Conversational Development Assistants, Natural User Interfaces

ACM Reference Format:
Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-Aware Con-

versational Developer Assistants. In Proceedings of 40th International Con-
ference on Software Engineering, Gothenburg, Sweden, May 2018 (ICSE’18),
11 pages.

https://doi.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE’18, May 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN . . . $15.00
https://doi.org/

1 INTRODUCTION
Software development is hard. Empirical studies have shown that

developers have to perform a broad variety of development tasks,

frequently switching applications and contexts [5, 13, 14]. To suc-

cessfully complete these higher level tasks, developers must perform

a series of low-level actions—workflows—and maintain mental mod-

els that combine data from a variety of disparate sources including

the source code of the system, version control, issue trackers, test

executions, and discussion threads [8, 9, 11].

While it would benefit developers to automate these workflows, it

is challenging for three reasons. First, it is hard to determine a priori

all the tasks and workflows developers will need to complete. Second,

these workflows consist of various low-level actions that often span

across tool boundaries and require a diverse set of parameters that

depend on the current context and developer intent. Third, even if

there are scripts configured for automating workflows, the developer

needs to remember their existence and how to invoke them manually

in the current context.

In this paper, we explore the potential of conversational agents

to support and automate common development workflows. We de-

signed a conversational developer assistant (CDA) that (a) provides

a conversational interface for developers to specify their high-level

tasks in natural language, (b) uses an intent service to automatically

map high-level tasks to low-level development actions, and (c) auto-

matically tracks developers’ actions and relevant state in a context
model to automate the workflows and specification of parameters.

The CDA allows developers to express their intent conversationally,

eliminating the need for learning and remembering rigid syntax,

while promoting discoverability and task flexibility. The automatic

mapping and execution of workflows based on the developer’s high-

level intent, augmented by the context model, reduces developers’

cognitive effort of breaking down high-level intents into low-level ac-

tions, switching context between disparate tools and parameterizing

complex workflows.

In order to conduct a meaningful industrial evaluation of the

feasibility, usability, and potential use cases of CDAs in software

development, we implemented Devy, a prototype voice-controlled

CDA with a pre-defined set of automated Git and GitHub tasks.

Devy’s primary goal is to help developers maintain their focus on

their development tasks, enabling them to offload low-level actions

to an automated assistant.

We performed a mixed methods study—a combination of an in-

terview and an experiment—with 21 industrial software engineers

using Devy as a technology probe. Participants had the opportunity

to interact with our Devy prototype so they could offer concrete

feedback about alternative applications of CDAs to their industrial

workflows. Each engineer performed multiple experimental tasks

ICSE’18, May 2018, Gothenburg, Sweden Nick C. Bradley, Thomas Fritz, and Reid Holmes

Table 1: Steps for the common ‘share changes’ workflow.
(a) Manual steps.

(a) Open a web browser for the issue tracker and check the

issue number for the current work item.

(b) Open a terminal and run the tests against the changed code

to ensure they work (e.g., npm run tests).
(c) Open a terminal and commit the code, tagging it with

the current work item number (e.g., git commit -m ‘See
issue #1223’).
(d) Pull any external changes from the remote repository (e.g.,

git pull).
(e) Push the local change to the remote repository (e.g., git
push).
(f) Open the commit in the version control system using the

GitHub web interface and open a pull request.

(g) Determine a set of reviewers and assign them to the pull

request with the GitHub web interface.

(b) Literal CDA steps.

“CDA, Create a branch ‘issue1223’ in the FrontEnd repo.”

→ “Branch created.”

“CDA, Run all the tests in the FrontEnd repo.”

→ “Tests executing.”

“CDA, Commit with ‘Fix #1223’ in the FrontEnd repo.”

→ “Commit made.”

“CDA, Pull the FrontEnd repo.”

→ “Pulled.”

“CDA, Push the FrontEnd repo.”

→ “Pushed.”

“CDA, Open GitHub for the FrontEnd repo and create a pull

request for branch issue1223.”

→ “Pull request created.”

“CDA, Open GitHub for the FrontEnd repo and add alice79 as

a reviewer for the issue1223 pull request.”

→ “Reviewer added.”

with Devy and answered a series of open-ended questions. The eval-

uation showed that engineers were able to successfully use Devy’s

intent-based voice interface and that they saw promise in this type

of approach in practice.

This feedback provides evidence of the potential and broad appli-

cability of both Conversational Developer Assistants and developer’s

interest in increased automation of their day-to-day workflows.

The primary contributions of this paper are:

• A context model and conversational agent to support auto-

mated development assistants.

• Devy, a prototypical voice-activated CDA that infers devel-

oper intent and transforms it into complex workflows.

• A mixed methods study demonstrating the value of this ap-

proach to industrial developers and providing insight into how

CDAs can be used and extended in the future.

We describe a concrete scenario in Section 2, our approach in Sec-

tion 3 and our experiment in Sections 4 and 5. Related work, discus-

sion, and conclusions follow in Sections 6–8.

2 SCENARIO
Development projects often use complex processes that involve

integrating numerous tools and services. To perform their high-level

tasks, developers need to break down their intent into a list of atomic

actions that are performed as part of a workflow. While the intent

may be compact and simple, workflows often involve interacting

with a variety of different tools.

Consider a developer whose task is to submit their source code

changes for review, which requires using version control, issue track-

ing, and code review tools. At a low level, the developer needs to:

commit their changes, push them to a remote repository, link the

change to the commit in the issue tracker, and assign reviewers in

the code review system. Our context model is able to track what

project the developer is working on, what issue is currently active,

and who common reviewers for the changed code are in order to

enable the developer to just say “Devy: I’m done” to complete this

full workflow without having to change context between different

tools.

To perform this task manually, the developer must follow a work-

flow similar to that shown in Table 1a (for simplicity, we illustrate

this workflow using GitHub). In this scenario, developers use three

tools: GitHub (Table 1a-(a),(f),(g)), the test runner (Table 1a-(b)),

and git (Table 1a-(c),(d),(e)). They also performed four overlapping

subtasks: running the tests (Table 1a-(b)), linking the commit (Ta-

ble 1a-(a),(c)), managing version control (Table 1a-(c),(d),(e)), and

configuring the code for review (Table 1a-(f),(g)). In addition, they

relied on several pieces of implicit contextual knowledge: (1) the

repository being used, (2) the current issue, (3) how to run the tests,

(4) the project’s commit linking protocol, and (5) the project’s code

review assignment protocol.

Providing a voice-activated CDA for this workflow without any

additional abstraction (or context model) offers little benefit as shown

by the transcript in Table 1b which has been aligned with the manual

steps in Table 1a. Grey rows are the developer’s speech, white rows

are the CDA’s responses. This implementation has obvious short-

comings: it provides no meaningful benefit over just accessing the

commands directly, as the developer must say all of the commands

with the right names, in the right order, with the right parameters,

and it would no doubt be faster if they performed the actions directly.

Automating this workflow would require knowing the five pieces

of the contextual information along with knowledge of how to use

the three tools employed by the developer. Fortunately, these are all

pieces of information that are tracked directly by the context model

of our conversational developer assistant Devy. The same workflow

can be completed using Devy’s verbal natural language interface:

Dev Devy, I’m done.

Devy You have uncommitted changes. Should I commit them?

Dev OK.

Devy OK, I’m about to open a pull request, should I assign Alice?

Dev Yeah.

Context-Aware Conversational Developer Assistants ICSE’18, May 2018, Gothenburg, Sweden

During this interaction, the developer did not need to use any

other tools or switch their context away from their source code. The

context model automatically tracked the project being worked on,

the files being changed, and the current issue number. To show the

results of the tests (Table 1a-(b)), Devy appends the output of the

test execution as a comment to the pull request thread when it is

complete. To identify the list of appropriate reviewers (Table 1a-(g)),

Devy is able to query a simple service that examines past reviewers

for the code involved in the developer’s change.

While the developer’s intent, submitting changes, is simple, it

can only be realized through the indirect process listed above that

involves interacting directly with the version control system, issue

tracker, test execution environment, and code review system. Each

of these systems incurs their own mental and temporal costs, and

provides opportunities for a team’s workflow to be ignored (e.g., if

new team members are not aware of all steps, or an experienced one

skips a step). Ultimately, this task involves four context switches

between the issue tracker, the version control system, the pull request

interface, and the code review system; Devy abstracts away this

minutiae so the developer can focus on their high level intent.

3 APPROACH
Devy, our conversational developer assistant (CDA), has three main

components: a conversational user interface, a context model, and

an intent service. Developers express their intent using natural lan-

guage. Our current prototype uses Amazon Echo devices and the

Amazon Alexa platform to provide the conversational interface; this

interface converts developer sentences into short commands. These

commands are passed to our intent service which runs on the devel-

oper’s computer. The context model actively and seamlessly updates

in the background on the developer’s computer to gather information

about their activities. Using the context model and the short com-

mands from the conversational interface, the intent service infers

a rich representation of the developer’s intent. This intent is then

converted to a series of workflow actions that can be performed for

the developer. While the vast majority of input to the intent service

is derived from the context model, in some instances clarification is

sought (via the conversational interface) from the developer. Devy’s

architecture is shown in Figure 1.

3.1 Conversational Interface (Devy Skill)
The conversional interface plays a crucial role by allowing develop-

ers to express their intents naturally without leaving their develop-

ment context. The Devy Skill has been implemented for the Amazon

Alexa platform (apps on this platform are called skills). To invoke

the Devy Skill, a developer must say:

“Alexa, ask Devy to ...”

They can then complete their phrase with any intent they wish to

express to Devy. The Amazon microphones will only start recording

once they hear the ‘Alexa’ word, and the Devy skill will only be

invoked once ‘Devy’ has been spoken.

The Amazon natural language APIs translate the developer’s con-

versation into a JSON object; to do this, the Devy skill tells the

Amazon Alexa platform what kinds of tokens we are interested

in. We have provided the platform with a variety of common ver-

sion control and related development ‘utterances’ we identified in

Conversation
Layer

Developer's Computer

Natural
Language

Standard
Development

Behaviour

Echo
Amazon

NLP

Devy
Skill

Context
Model

...

Workflow
Actions

Intent
Service

Figure 1: Devy’s architecture. A developer expresses their inten-
tion in natural language via the conversational layer. The intent
service translates high-level language tokens into low-level con-
crete workflows which can then be automatically executed for
the developer. Dotted edges predominantly communicate in the
direction of the arrow, but can have back edges in case clarifica-
tion is needed from the user.

the literature and from discussions with professional developers;

many utterances also have synonyms (e.g., for ‘push’, we also in-

clude ‘submit’, and ‘send’). For a sentence like “Alexa tell Devy to

push.” the Amazon JSON object would contain one primary field

intent.name with the value ‘pushChanges’.
While Alexa has been useful for constructing our prototype, it

imposes two restrictions that hinder our approach:

(1) The requirement to use two names, “Alexa” and “Devy” is

cumbersome.

(2) More technically, Alexa doesn’t allow push notifications and

requires the client app to respond within ten seconds; both of

which cause issues for long running commands.

While our current approach uses the Amazon APIs for voice input,

using a text-based method (e.g., a ChatBot) would also be feasible

for scenarios where voice-based input is not appropriate.

3.2 Context Model
The context-aware development model represents the ‘secret sauce’

that enables advanced voice interactions with minimal explicit devel-

oper input. The differences between manual CDA and context-aware

CDA (Devy) approaches are exemplified in Section 2. The model

acts as a knowledge base allowing the majority of the parameters re-

quired for performing low-level actions to be automatically inferred

without developer intervention. In cases where required information

is not present in the context model, it can be prompted from the

developer using the conversational interface.

The context model for our prototype system is described in Ta-

ble 2. The current model supports version control actions and online

code hosting actions. Our prototype tool includes concrete bindings

for Git and GitHub respectively for these two roles but also supports

other semantically similar systems such as Mercurial and BitBucket.

While other sets of information can be added to the model, these

were sufficient for our current prototype.

The ActiveFile model parameter is the most frequently up-

dated aspect of the model. As the developer moves from file to file

ICSE’18, May 2018, Gothenburg, Sweden Nick C. Bradley, Thomas Fritz, and Reid Holmes

Table 2: Context Model elements.

Current Focus
ActiveFile

Each Local Repository
Path

Version Control Type

OriginURL

UserName

CurrentBranch

FileStatus

Each Remote Repository
OpenAssignedIssues[]

Collaborators[]

Other Services
BlameService

TestService

ReviewerAssignmentService

in any text editor or IDE, the full path of the active file is noted

and persisted in the ActiveFile field. The context model is also

populated with information about all version control repositories it

finds on the developer’s machine. From these local repositories, us-

ing the OriginURL, it is also able to populate information about the

developer’s online code hosting repositories. The path component

of ActiveFile lets the model index into the list of version control

repositories to get additional details including the remote online

repository, if applicable. Our prototype also allows developers to

exclude specific repositories and paths from being tracked by the

context model and only minimal information about the state of the

command is exchanged with Amazon to ensure the privacy of the

user.

We designed our context model to pull changes from a developer’s

computer when they interact with Devy. Due to the limited size of our

context model, the pull-based architecture is sufficient. However, for

more advanced models, a push-based architecture where the model

is initialized at startup and continuously updated by external change

events would be preferable to avoid delaying the conversational

interface.

Extending the model is only required if the developer wishes to

support workflows that require new information. Model extensions

can be either in terms of pre-populated entries (push-based above),

or pointers to services that can be populated on demand (pull-based).

For example, the TestService, which takes a list of files and re-

turns a list of tests that can run, can be pointed to any service that

conforms to this API (to enable easy customization of test selection

algorithms). If developers wanted more fine-grained information

such as the current class, method, or field being investigated, they

could add a relevant entry to the model and populate it using some

kind of navigation monitor for their current text editor or IDE.

3.3 Intent Service
The intent service does the heavy lifting of translating the limited

conversational tokens and combining it with the context model to

determine the developer’s intent. This intent is then executed for the

Ready

pull

stash
commit

push

commit?

commit? stash?

pull

pull

push

behind:
pull first

ListingIssues

GettingOwner

CreatingPR

ListingUsers

owner

pull
request

get
issue

Branching branch

list
issues

create
pull

request

create
pull

request

push

get
issue

Committing

PushingStashing

Pulling

RunTests

test

report
on PRrun tests

assign
reviewers

Figure 2: Devy’s finite state machine for handling workflows.
Stack-push transitions are shown with solid lines while stack-
pop transitions are shown with dotted lines. For readability,
some arrows do not connect with their state. However, all lines
are labelled with the action that causes the state transition and
correspond to the next state. Edges between the FSM and the
Context Model are elided for clarity.

developer in the form of workflow actions. The context model is

updated as the actions execute since their outcomes may influence

subsequent steps of the workflow.

The conversational layer provides the intent service with ex-

tremely simple input commands (e.g., a single verb or noun). The

intent service uses a stack-based finite state machine (FSM) to reason

about what the input command means in this context. While more

constrained than plan-based models, FSMs are simple to implement

and are sufficient for the purposes of evaluating the potential of

CDAs. The complete FSM for our version control intent service is

shown in Figure 2. Within the FSM, transitions between states define

workflow steps while states contain the logic needed to prepare and

execute low-level actions. Each state is aware of other states that

may need to be executed before they can successfully complete (e.g.,

a pull may be required before a push if the local repository is behind

the remote repository). We use a stack-based FSM because workflow

actions frequently depend on each other. By using a stack, we are

able to just push commands on the stack and allow the execution to

return to the right place in an understandable way. These potential re-

turn edges are denoted by the dotted arrows in Figure 2; for example,

Stashing can be accessed either directly by the developer from the

Ready state, or as a consequence of a Pulling precondition. The

states in the FSM make heavy use of the context model to provide

values for their parameters.

4 STUDY METHOD
The long-term objective of our research is to enable intent-based

workflows without software developers having to continuously map

their intents to low-level commands. Therefore, we are investigating

Context-Aware Conversational Developer Assistants ICSE’18, May 2018, Gothenburg, Sweden

when and how software developers would use a conversational de-

veloper assistant that supports intent-based workflows. Specifically,

we are examining the following research questions:

RQ1 How well can a conversational developer assistant approach

support basic development tasks related to version control?

RQ2 For which workflows would a conversational developer assis-

tant be useful to developers and why?

To answer our research question, we developed the voice-enabled

CDA, Devy, as a prototype (see Section 3), piloted it with several

student developers, and then conducted a mixed methods study with

21 professional software developers. The study was a combination

of an experiment with Devy and semi-structured interviews.

4.1 Participants
We recruited 21 professional software developers (2 female, 19 male)

from 6 local software companies of varying size. Participants had

an average of 11 (±8) years of professional development experience

and an average of 15 (±11) years1 of programming experience.

Participants were classified as either junior developers (8) or senior

developers (13) based on job title. All participants had experience

using version control systems and all but 1 had experience with Git.

Participants were recruited through personal contacts and recruit-

ing emails. To pique interest and foster participation, we included

a short video2 introducing Devy and demonstrating it with the use

case of determining the owner of an open file. In addition, we in-

centivized participation with a lottery for two Amazon Echo Dots

amongst all participants. To participate in our study, subjects had to

be software developers and be familiar with some version control

system.

4.2 Procedure
The study consisted of three parts: (1) a brief semi-structured inter-

view to ask about developers’ tasks and workflows as well as about

the possible value of a conversational assistant to support these, (2)

an experiment with Devy comprised of two study tasks, and (3) a

follow-up semi-structured interview on the experience and use of

a CDA. We piloted our study and adapted the procedure based on

the insights from our pilots. We chose this three step procedure to

stimulate developers to think about a broad range of workflows and

how a CDA might or might not help, as well as to avoid priming the

participants too much and too early with the functionality that our

current Devy prototype provided. The order and sample questions

of the parts of our study are illustrated in Table 3. The study was

conducted in quiet meeting rooms at the participant’s industrial site.

Interview (Part One). To have participants reflect upon their work

and workflows, we started our first semi-structured interview by

asking general questions about participants’ work days and then

more specifically about the tasks they are working on as well as the

specific steps they perform for these tasks (see Table 3 for sample

questions). We then introduced Amazon’s Alexa to participants. To

get participants more comfortable with interacting with Alexa, we

had them ask Alexa to tell them a joke. Next, we asked participants

1Missing data for two participants.
2http://soapbox.wistia.com/videos/HBzPb4ulqlQI

Table 3: Order, sample questions, and tasks from our mixed
methods study.

Interview - Part One
1.1 Walk me through typical development tasks you work on every day.

1.2 How do you choose a work item; what are the steps to complete it?

1.3 How do you debug a failed test?

2 To help you get familiar with Alexa, ask Alexa to tell us a joke.

3 Can you think of any tasks that you would like to have “magically”

completed by either talking to Alexa or by typing into a natural

language command prompt?

Experiment - Interaction Task (T1)
Complete the following tasks:

Launch Devy by saying “Alexa, launch Devy” [..]

T1.1 Using Devy, try to get the name of the person whom you might

contact to get help with making changes to this ‘readme’ file.

T1.2 Next, make sure you are on branch ‘iss2’ and then make a change

to this ‘readme’ file (and save those changes).

T1.3 Finally, make those changes available on GitHub.

Experiment - Demonstration Task (T2)
Complete the following tasks:

T2.1 Say “Alexa, tell Devy to list my issues.” to list the first open issue on

GitHub. List the second issue by saying “Next”, then stop by saying

“Stop”. Notice that the listed issues are for the correct repository.

T2.2 Say “Alexa, tell Devy I want to work on issue 2.” to have Devy

prepare your workspace for you by checking out a new branch.

T2.3 Resolve the issue: comment out the debug console.log on line 8 of

log.ts by prepending it with //. Save the file.

T2.4 Say “Alexa, tell Devy I’m done.” to commit your work and open a

pull request. Devy will ask if you want to add the new file; say “Yes”.

Next, Devy recommends up to 3 reviewers. You choose any you

like. When completed, Devy will say it created the pull request and

open a browser tab showing the pull request. Notice the reviewers

you specified have been added. Also, notice that tests covering the

changes were automatically run and the test results were included

in a comment made by Devy.

Interview - Part Two
1 Imagine that Devy could help you with anything you would want,

what do you think it could help you with and where would it provide

most benefit?

2 Are there any other tasks / goals / workflows that you think Devy

could help with, maybe not just restricted to your development tasks,

but other tools you or your team or your colleagues use?

3 When you think about the interaction you just had with Devy, what

did you like and what do you think could be improved.

4 Did Devy do what you expected during your interaction? What

would you change?

5 Do you think that Devy adds value? Why or why not?

about the possible tasks and workflows that a conversational assis-

tant such as Alexa could help them with in their workplaces.

Experiment. To give participants a more concrete idea of a CDA and

investigate how well it can support basic workflows, we conducted

an experiment with Devy on two small tasks. For this experiment,

we provided participants a laptop that we configured for the study.

We connected the Amazon Echo Dot to the laptop for power and we

connected the laptop and the Echo Dot to the participant’s corporate

wireless guest network.

ICSE’18, May 2018, Gothenburg, Sweden Nick C. Bradley, Thomas Fritz, and Reid Holmes

The tasks were designed to be familiar to participants and included

version control, testing, and working with issues. The objective for

the first task—interaction task—was to examine how well developers

interact with Devy to complete a task that was described on a high-

level (intent-level) in natural language. This first task focused on

finding out who the owner of a specific file is and making a change

to the file available in the repository on GitHub. The task description

(see also Table 3) was presented to the participants in a text editor

on the laptop. For the task we setup a repository in GitHub with

branches and the file to be changed for the task.

The objective for the second task—demonstration task—was to

have participants use Devy for a second case and demonstrate its

power and potential of mapping higher-level intents to lower-level ac-

tions, e.g. from telling Devy that one “is done” to Devy committing

and pushing the changes, running the relevant tests automatically

and opening the pull request in a web browser tab (see Table 3 for

the task description).

Interview (Part Two). After the experiment, we continued our in-

terview. Interacting with Devy and seeing its potential might have

stimulated participants’ thinking so we asked them further about

which scenarios an assistant such as Devy would be well-suited

and why. We also asked them about their experience with Devy

during the two experimental tasks (see Table 3 for the questions).

Finally, we concluded the study by asking participants demographic

questions and thanking them for their participation.

4.3 Data Collection and Analysis
The study, including the interviews and experiment, lasted an average

of 36 (±4) minutes. We audio recorded and transcribed the interviews

and the experiment and we took written notes during the study.

To analyze the data, we use Grounded Theory methods, in par-

ticular open coding to identify codes and emerging themes in the

transcripts [17]. For the open coding, two authors coded five ran-

domly selected transcripts independently and then discussed and

merged the identified codes and themes. In a second step, we vali-

dated the codes and themes by independently coding two additional

randomly selected transcripts. For the coding of all transcripts, we

used the RQDA [6] R package. In this paper, we present some of

the most prominent themes, notably those that illustrate the most

common use cases, the benefits, and the shortcomings of CDAs.

From the experimental task T1, we derived a count based on the

number of times a participant had to speak to Devy before they were

able to complete a subtask. We adjusted this count by removing

55 attempts (out of 175) that failed due to technical issues, i.e.

connectivity problems or unexpected application failures of Alexa,

due to a participant speaking too quietly, and due to participants

trying to invoke Devy without using the required utterance of “Alexa,

ask/tell Devy...”.

5 RESULTS
In this section we present the results for our two research questions

that are based on the rich data gathered from the experimental study

tasks and the interview. First, we report on the participants’ inter-

action and experience with our CDA Devy. Then we report on the

workflows and tasks that a CDA might support as well as its benefits

and challenges.

●

●

Figure 3: Adjusted number of attempts required to complete
each task of T1 across 20 participants.

5.1 Completing Development Tasks with Devy
Overall, all participants were able to complete all subtasks of T1

and T2 successfully with Devy. Many participants expressed that

Devy was “neat” (P17) and “cool” (P18) and some also stated that

Devy did more than they expected. For instance, P9 explicitly stated

“[Devy] exceeded my expectations” while P8 “[was] surprised at
how much it did [..] it actually did more than [..] expected”.

For the first experimental task T1, we examined if participants

were able to interact with Devy and complete specific subtasks that

were specified on the intent level rather than on the level of specific

and executable (Git) commands. Figure 3 shows the number of Devy

interactions (attempts) that it took each participant to complete each

of the three subtasks of T1. The numbers in the figure are based on

20 participants (one participant completed T2 before T1 and was

excluded due to learning effects); the values were adjusted by re-

moving attempts that failed due to technical issues (see Section 4.3).

Across all three subtasks, participants used very few attempts to
complete the subtasks with an average of two attempts for T1.1

and T1.3 and a single attempt for T1.2.

Subtask T1.1 required getting the name of the person who made

the most changes to an open file. This task had the highest variance

with one participant taking 8 attempts since he had never used Git

before. Six participants required some guidance. This was largely

due to Devy only being trained with three utterances that all focused

on file ownership and none that focused on the number of changes. In

fact, seven participants used an utterance similar to “who has made
changes” (P1, P2, P3, P4, P14, P17, P19) on their first attempt. This

shows that either developers require training to learn the accepted

utterances or, better yet, that Devy should support a broad set of
utterances. One participant compared it to the specific and rigid

syntax of command-oriented approaches:

“Multiple ways you can tell it to do the same thing [because] it might
be advantageous where [you] might forget the exact terminology.”
(P10)

Context-Aware Conversational Developer Assistants ICSE’18, May 2018, Gothenburg, Sweden

In their first interactions with Devy, most participants (16 out

of 20) did not take advantage of its automatic context tracking and

instead included the specific file name in their utterances. This was

due to participants thinking of Devy as a traditional tool, “making
the assumption [Devy] would work just like the command line client”
(P19) and they “expected [Devy] to be kind of simple and dumb”

(P7). As their sessions progressed, participants started to express

their intentions more naturally and more vaguely, for instance by

replacing the file name with “this” or “this file”, and participants
appreciated the automated context tracking:

“I was just thinking it knows the context about what I’m talking about.
That’s kind of cool.” (P2)

Subtask T1.2 required getting the checked-out branch and only

took one attempt on average. All but two participants were able

to complete the subtask without guidance. Thereby, participants
used various utterances to interact with Devy from ones that were

close to the Git commands “Alexa, tell Devy to checkout branch iss2”

(P15) to less command-oriented phrases “Alexa, ask Devy to get onto
branch iss2 [..]” (P8). The two participants that did not complete

this task accidentally skipped it. The one participant that took 4

attempts paused between starting Devy and issuing the command.

Subtask T1.3 focused on submitting changes to GitHub. Partic-

ipants took an average of 2 attempts to complete this and had a

lower variance than for T1.1. While 14 participants followed the Git

command line interaction closely by first committing the changes

and then pushing them, the other 6 participants took advantage of
some of Devy’s automation and for example directly said “Alexa,
tell Devy to push to GitHub” (P15) which resulted in Devy commit-

ting and pushing the changes. Also, for this subtask, most partici-

pants took advantage of Devy’s context model and omitted some

of the specifics from their phrases, such as what exactly should be

committed or pushed.

The second experimental task T2 was to demonstrate Devy’s

potential. Since all utterances were specified in the task description,

and no participants had problems following the steps, we will not

include any further analysis of this task.

Observation. Participants were able to use our conversational
developer assistant to successfully complete three common develop-
ment tasks without explicit training, with very few attempts, and by
taking advantage of the automatic context tracking.

5.2 CDA Benefits & Scenarios
Participants reported a myriad of scenarios and situations in which a

CDA could enhance their professional workflow.

One common workflow supports multi-step and cross-appli-
cation tasks. Several development tasks require a certain “process”

(P8) or sequence of steps to be completed that oftentimes require

developers to switch between different applications. An example

referred to by several participants was the sharing of changes:

“Once I’ve committed everything locally, I’ll push it to GitHub. I’ll
go to GitHub in my web browser, create a new pull request, write
out a description of the change [..] and how I tried to accomplish
that [..] Once the pull request is created, I’ll go to Slack and post a
message on our channel and say there is a new PR” (P15)

Participants indicated the cost and effort of these multi-step and

cross-application tasks and how a conversational assistant would

reduce the necessary application/context switches and allow de-

velopers to not “lose [..] concentration on the thing I’m looking at”
(P6) and stay more focused:

“If you could do some [of these tasks] automatically, just by talking,
I’d be really happy because I usually have a ton of consoles and
switching over really confuses me when you have so many screens
open. Just alt-tabbing between them consistently, even if you do that
like 9 out of 10 times successfully, at the end of the day you start
getting sloppy and holding those trains of thought in mind would
probably be simpler if you weren’t changing screens so often” (P7)

“Today, I think I had like 20 emails all related to my pull request and
it was all just single comments and I have to link back [to the pull
request..] and then come back [to my email client] and then delete,
and then go back and [..]. So there’s a lot of back and forth there.
Those are the main things that I feel: ‘oh these are taking time and
it shouldn’t...’” (P3)
A CDA is also considered particularly beneficial for the automatic
mapping of higher-level tasks to commands:

“Anything that helps you stay in the flow is good, so if I can do these
higher level tasks with a brief command to some place rather than
break them down into a sequence of git commands plus switching
to the browser plus doing yet another thing interspersed with some
manual reading, it would be a win.” (P19)

This automatic aggregation of multiple steps is seen as a “simplifica-
tion” (P7) by participants:

“[If] we have a bot tell me the IP of my deployed AWS container
rather than a 10 step ssh-based process to get it that would be very
simple [..and] interacting with a voice assistant to get information
[..] out of the development ecosystem would be useful.” (P18)

By abstracting the specific low-level actions, the automatic mapping

reduces the need for memorization of the commands, which re-

duces errors and saves time:

“There are too many command line steps that you can get wrong”

(P18)

“A lot of the time you know what it is in your head, but you still gotta
find it. So that’s the stuff [..] this would be really helpful for.” (P8)

Participants mentioned that this can be valuable for infrequent but

recurring—“once in a while” (P11)—tasks, since they “do [them] of-
ten enough to want a better interface but seldom enough that [they]
can’t remember all the right buttons” (P10) or they can’t remember

the “crazy flags that you’ve gotta remember every single time” (P8).

By continuously switching between applications, developers have

to frequently re-establish their working context. For instance, after

committing and pushing a code change using a command line tool,

developers often “have to go to the browser, open a new tab, go to
GitHub and find the pull request” (P15) which can be a “a pain in
the arse” (P8). In general, when switching between applications,

participants need to do a lot of “admin work” (P14) just to ensure

that the applications are “in sync” (P14). Therefore, a major benefit

of a CDA that automatically tracks context in the background is that

it reduces the explicit specification of context.

ICSE’18, May 2018, Gothenburg, Sweden Nick C. Bradley, Thomas Fritz, and Reid Holmes

By automatically aggregating multiple steps and keeping track of the

current context, participants also thought that a CDA can support
information retrieval, especially when “there isn’t really a good
interface” (P1) for querying and it can speed up the process:

“So, looking at the context of what I’m doing and then like highlight-
ing an error text and then copying it and pasting it into Google and
looking for it. And then looking down for some of the best matches.
Even just ‘Devy look this up for me’.” (P2)

“Right now, you need to do two or three commands and know what
all the change list numbers are [..to] look up all the information
[about who last touched a file].” (P20)

Instead of just automating and aggregating tasks, participants sug-

gested that a CDA that tracks a developer’s steps and context could

help to enforce workflows and make sure that nothing is forgotten:

“There are certain flows that often go together. When I start a day,
I often need to check the same things [..and it is] not easy to check
off the top of my head, so I forget to do that sometimes [..] so that
type of thing would be great to do all in one shot. So where am I
[which branch], what is my status, do I need to rebase, and if I need
to rebase, do it [..]” (P3)

In case a developer does not follow the usual workflow, the context

tracking can come in handy and allow her to go back in history:

“sometimes I just go too far down a path. And I’ve gone through
three or four of those branches in my mind and I know I need to
go back but because I [..] only want to go part way back, that just
becomes really difficult. So if there was some simple way it could
recognize that I’m far enough down a path [..it] would be amazing
if I could then realize that I have screwed up, rewind 10 minutes,
commit and then come back to where I am now.” (P21)

Several participants noted that the additional communication chan-

nel offered by Devy could be utilized to parallelize tasks that would

otherwise require a switch in context and focus. The archetypal case

of this was setting reminders:

“Yeah, I think of them like if I’m coding and I have an idea of an-
other approach I could take but I want to finish the current one I’m
doing, I’ll throw myself in a little Slack reminder and then I get a
notification in the time I specified.” (P21)

However, this idea is more general and can be particularly useful in

cases where the secondary task may take some time to complete:

“Where it’d be useful is where I’m in the middle of one task and I
want another being done. If I’m working on one part of it, either
debugging or editing some code and I want something to go on in
the background... Like we’ve got a build system so maybe I want to
start the build for another tool that I will be using soon and I don’t
want to switch over to start that.” (P11)

“If I have a pull request and I’m waiting for it to be approved and I
have nothing else to do in the meantime, I’m going to make lunch. I
could just be cooking and I could just be like: ‘has it been approved
yet?’ and if it has then merge it before someone else gets their stuff
in there. Oh, that would be great.” (P3)

Seven participants explicitly mentioned that a voice-activated assis-

tant provides an alternative to typing that allows tasks be performed

when the developer’s hands are “busy” (P11) or “injured” (P16,P20)
and that “as intuitive as typing is [..], talking is always going to
be more intuitive” (P12). Similarly, it provides an alternative to
interacting with GUIs that “waste a lot of time just by moving the
mouse and looking through menus” (P7) or to navigate code with

context, for example by asking “where’s this called from” (P10) or

“what classes are relevant to this concept” (P13).

Observation. There are a large number of development tasks in
participants’ workflows that are currently inefficient to perform due
to their multi-step and cross-application nature. A conversational
developer assistant might be able to support these scenarios by
reducing application switches, the need for context specification and
memorization, and by supporting parallelization of tasks.

5.3 CDA Challenges
Participants also raised several concerns about their interaction with

Devy and conversational developer assistants more generally. The

predominant concern mentioned by several participants was the dis-
ruptiveness of the voice interface in open office environments:

“I work in a shared workspace so there would have to be a way for us
to have these dialogs that are minimally disruptive to other people.”
(P19)

“I imagine a room full of people talking to their computers would be
a little chaotic.” (P2)

Further concerns of the voice interaction are its “accuracy” (P11)
and that the verbal interaction is slow:

“I didn’t really enjoy the verbal interaction because it takes longer.”
(P2)

“It feels weird to interrupt [Devy]. That’s probably more of a social
thing [..] it’s a voice talking and you don’t want to interrupt it and
then you have to end up waiting” (P15)

While Devy was able to automate several steps, participants were

concerned about the lack of transparency and that it is important

to know which low-level actions Devy is executing:

“The downside is I have to know exactly what it’s doing behind the
scenes which is why I like the command line because it only does
exactly what I tell it to do.” (P8)

This can be mitigated by providing more feedback, possibly through

channels other than audio:

“I think for me, when [Devy] is changing branches or something,
I’d probably want to see that that has happened in there. Just some
indication visually that something has happened. I mean it told me
so I’d probably get used to that too.” (P6)

However, there is some disagreement on exactly how much feedback

is wanted:

“I liked that there was definitely clear feedback that something is
happening, even for things that take a bit of time like git pushes.”
(P1) For a conversational developer assistant completeness—the

number of intents that the CDA is able to understand—is important.

Participant P14 made the case that “the breadth of commands needs
to be big enough to make it worthwhile.”

Context-Aware Conversational Developer Assistants ICSE’18, May 2018, Gothenburg, Sweden

This completeness is also related to challenges in understanding
the intent of all possible utterances a developer could use:

“It’s frustrating to talk to something that doesn’t understand you.
Regardless of how much more time it takes then another method, it
would still be more frustrating to argue with a thing that fundamen-
tally doesn’t feel like it understands me.” (P12)

Finally, since developers use a diverse set of tools in a variety of

different ways and “everyone’s got a little bit of a different workflow”

(P2), it is necessary for CDAs to support customization. For this,

one could either “create macros” (P2) or have some other means

for adapting to each developer’s particular workflow so that Devy

“could learn how [people are] using it” (P9). This aspect is related to

completeness but emphasizes altering existing functionality to suit

the individual or team.

Observation. Participants raised several concerns for conversa-
tional developer assistants related to disruptiveness of voice interac-
tions, the need for transparency, completeness, and customization.

5.4 Summary
Ultimately, industrial developers were able to successfully perform

basic software development tasks with our conversational developer

assistant, providing positive evidence for RQ1. In terms of RQ2,

CDAs appear to be most useful for simplifying complex workflows

that involve multiple applications and multiple steps because of

their unnecessary context switches which interfere with developer

concentration.

6 RELATED WORK
We build upon a diverse set of related work in this paper. To support

developers in their tasks, researchers have long tracked development

context in order to provide more effective analyses and to surface

relevant information. The emerging use of bots for software engineer-

ing also shows promise for automating some of the tasks, improving

developers effectiveness and efficiency. Finally, natural language

interfaces show increasing promise for reducing complexity and

performing specific development tasks.

6.1 Development Context
Our model of task context is fundamental to enabling Devy to pro-

vide a natural interface to complex workflows. Previous work has

looked at different kinds of context models. Kersten and Murphy

provide a rich mechanism for collecting and filtering task context

data, specifically about program elements being examined, as de-

velopers switch between different tasks [7]. Our context model is

more restrictive in that we mainly track the current task context: past

contexts are not stored. Concurrently, our context model includes

much more detail about non-code aspects relevant to the developer,

their project, and their teammates.

Other systems have looked at providing richer contextual infor-

mation to help developers understand their systems. For example,

TeamTracks uses the navigation information generated by monitor-

ing how members of a team navigate through code resources to build

a common model of related elements [4]. MasterScope provides

additional context about code elements as they are selected in an

IDE [18]. The similarity between task contexts can also be used to

help identify related tasks [10]. Each of these systems demonstrates

the utility context models can confer to development tasks. Our work

extends these prior efforts by providing a context model appropriate

for conversational development assistants.

6.2 Bots for SE
In their Visions paper, Storey and Zagalsky propose that bots act

as “conduits between users and services, typically through a conver-

sational UI” [16]. Devy clearly sits within this context: the natural

language interface provides a means for developers to ‘converse’

with their development environment, while the provided workflows

provide an effective means for integrating multiple different prod-

ucts within a common interaction mechanism. Further to their bot

metaphor, Devy is able to interpret the conversation to perform

much more complex sequences of actions based on relatively little

input, only checking with the developer if specific clarification is

required. As Storey and Zagalsky point out, there is a clear relation-

ship between bots and advanced scripts. We firmly believe that the

conversational interface, combined with the context model, moves

beyond mere scripting to enable new kinds of interactions and work-

flows that could not be directly programmed. One study participant

also pointed out that “it’s nice to have the conversation when there
are things that are not specified or you forgot to do; that’s when
you want to get into a dialog. And when you’re in the zone, then
you can just tell it what to do” (P19), showing further benefit of the

conversational UI beyond scripting itself.

Acharya et. al. also discuss the concept of Code Drones in

which all program artefacts have their own agent that acts semi-

autonomously to monitor and improve its client artefact [1]. One

key aspect of these drones is that they can be proactive instead of

reactive. While Devy is not proactive in that it requires a developer

to start a conversation, it can proactively perform many actions in

the background once a conversation has been started, if it determines

that this appropriate for the given workflow. Devy also takes a differ-

ent direction than Code Drones in that rather than attaching drones

to code artefacts, Devy primarily exists to improve the developer’s

tasks and experience directly, rather than the code itself.

6.3 Natural Language Tools for SE
A number of tools have been built to provide natural language inter-

faces specifically for software engineering tasks.

The notion of programming with natural language is not new

(having first been described by Sammet in 1966 [15]). Begel fur-

ther described the diverse ways in which spoken language can be

used in software development [2]. More recently, Wachtel et. al.

have investigated using natural language input to relieve the devel-

oper of repetitive aspects of coding [19]. Their system provides a

mechanism for users to specify algorithms for spreadsheet programs

using natural language. In contrast, Devy does not try to act as a

voice front-end for programming: it works more at a workflow level

integrating different services.

Others though have looked at natural language interfaces as a

means for simplifying the complex tools used for software devel-

opment. One early relevant example of this by Manaris et. al. in-

vestigated using natural language interfaces to improve the abilities

of novice users to access UNIX tools in a more natural way [12].

ICSE’18, May 2018, Gothenburg, Sweden Nick C. Bradley, Thomas Fritz, and Reid Holmes

NLP2Code provides a natural language interface to a specific task:

finding a relevant code snippet for a task [3]. NLP2Code takes a

similar approach to Devy in that supports a specific development

task, but unlike Devy does not use a rich context model, nor does it

involve more complex development workflows.

7 DISCUSSION
In this section we discuss threats to the validity of our study and

future work suggested by our study participants.

7.1 Threats to Validity
The goal of our study was to gain insight into the utility of conversa-

tional developer assistants in the software engineering domain. As

with any empirical study, our results are subject to threats to validity.

Internal validity. We elicited details about participants’ work-

flows before they interacted with our prototype to mitigate bias and

again after using Devy to capture more detail. Despite this, it is pos-

sible that participants did not describe all ways Devy could impact

their workflows; given more time and a wider variety of sample

tasks, participants may have described more scenarios. While we

followed standard open coding processes, other coders may discern

alternative codes from our interview transcripts.

External validity. Though our 21 interviews with industrial de-

velopers yielded many insights, this was a limited sample pulled

from our local metropolitan region. While participants had differing

years of experience and held various roles at six different organiza-

tions, each with a different set of workflows, our findings may not

generalize to the wider developer community.

7.2 Future Work
The feedback we received from industrial developers was broadly

positive for our prototype conversational developer assistant. Thank-

fully, our participants had many great suggestions of ways to extend

and improve Devy to make it even more effective in the future.

The most pressing piece of future work is to implement alter-
native conversational layers for Devy, specifically a text-based

ChatBot-like interface. Participants mentioned this would be espe-

cially beneficial in open-plan offices (which all participants used). It

also avoids requiring Devy-specific hardware.

Currently, Devy can be extended through the intent service by

wiring up new states in the FSM. This requires the same amount

of work as creating scripts, although enables better integration with

existing states than simple scripting. Based on participant feedback,

supporting a more parameterized view of how the states are con-
nected to form custom workflows seems like a reasonable tradeoff

between complete scripting and a fully autonomous agent. Partici-

pants were also forthcoming with suggestions for a diverse set of

future workflows that could define the out-of-box-workflows for

version control, debugging, testing, collaboration, task management

and information retrieval.

A large step beyond this would be for the CDA to support generic

workflows out-of-the-box that can self-adapt to better enable user-
specific custom workflows without user intervention but based on

their own usage patterns.

Several participants also wished for tighter source code integra-
tion. The intent of this integration was to perform more query-based

questions of the specific code elements they were looking at without

interrupting their current task. For example:

“the thing people want the most...are abstract syntax trees. I think it
is something that would offer a lot of power if you also had assistive
technology layered on top.” (P8)

Using lightweight notes and reminders, CDAs might enable

semantic undos that could be further maintained using the context

model to rollback changes to meaningful prior states.

Enabling CDAs to proactively take action in terms of awareness

or in response to external events was widely requested:

“influence the output of what I’m working on...by [notifying] me
about getting offmy regular pattern, that would be the most valuable.”
(P8)

This could also help by preventing mistakes before they happen:

“If I tell it to commit and [there are an unusual number of changes],
it should confirm.” (P15)

Next, extending support for industrial tools to those commonly

used by industrial teams will enable Devy to be deployed in a wider

variety of practical contexts.

Participants were also enthusiastic about the potential for support

for enhanced cross-application workflows that otherwise cause

them to context switch or ‘copy-and-paste’ between independent

systems. We will further investigate extending support for these

kinds of tasks that force developers to context switch.

Finally, we built our prototype using the Alexa service and our

intent service to handle the natural language discourse and map it to

workflow actions. To support further workflows and ease the natural

language discourse with developers, we will examine whether and

how to extend the underlying discourse representation structure.

8 CONCLUSION
In this paper, we have explored the potential of conversational agents

to support developer workflows. In particular, we have described

Devy, a conversational development assistant that enables developers

to invoke complex workflows with only minimal interaction using

a natural language conversational interface. Through its context-

aware model, Devy supports rich workflows that can span multiple

independent tools; this frees the developer to offload these low-level

actions and enables them to focus on their high-level tasks.

Using our Devy prototype as a technology probe, we evaluated

our approach in a mixed methods study with 21 industrial soft-

ware engineers. These engineers were able to use Devy successfully

and appreciated that they did not need to specify and memorize

multi-step workflows and that it reduced context switches. They ad-

ditionally identified a concrete set of challenges and future directions

that will improve the utility of future CDAs.

Ultimately, the Devy prototype demonstrates that developers can

successfully launch complex workflows without interrupting their

current tasks while reducing developer effort. We believe that that

future conversational developer assistants will have the ability to im-

prove developer’s productivity and/or effectiveness by allowing them

to focus on their core development tasks by offloading meaningful

portions of their workflows to such automated agents.

Context-Aware Conversational Developer Assistants ICSE’18, May 2018, Gothenburg, Sweden

REFERENCES
[1] Mithun P. Acharya, Chris Parnin, Nicholas A. Kraft, Aldo Dagnino, and Xiao Qu.

2016. Code Drones. In Proceedings of the International Conference on Software
Engineering (ICSE). 785–788.

[2] Andrew Begel. 2006. Spoken Language Support for Software Development. Ph.D.
Dissertation. EECS Department, University of California, Berkeley.

[3] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code Snippet
Content Assist via Natural Language Tasks. In Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME). 628–632.

[4] Robert DeLine, Mary Czerwinski, and George Robertson. 2005. Easing Pro-
gram Comprehension by Sharing Navigation Data. In Proceedings of the Visual
Languages and Human-Centric Computing (VLHCC). 241–248.

[5] Victor M. González and Gloria Mark. 2004. Constant, Constant, Multi-tasking
Craziness: Managing Multiple Working Spheres. In Proceedings of the Conference
on Human Factors in Computing Systems (CHI). 113–120.

[6] Ronggui Huang. 2017. RQDA: R-based Qualitative Data Analysis.
[7] Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Improve Program-

mer Productivity. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE). 1–11.

[8] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental
Models: A Study of Developer Work Habits. In Proceedings of the International
Conference on Software Engineering (ICSE). 492–501.

[9] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. 1987.
Mental Models and Software Maintenance. Journal of Systems and Software (JSS)
7, 4 (1987), 341 – 355.

[10] Walid Maalej, Mathias Ellmann, and Romain Robbes. 2017. Using Contexts Sim-
ilarity to Predict Relationships Between Tasks. Journal of Systems and Software

(JSS) 128 (2017), 267 – 284.
[11] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On

the Comprehension of Program Comprehension. ACM Transactions on Software
Engineering and Methodology (TOSEM) 23, 4, Article 31 (2014), 37 pages.

[12] Bill Z. Manaris, Jason W. Pritchard, and Wayne D. Dominick. 1994. Developing
a Natural Language Interface for the UNIX Operating System. Proceedings of the
Conference on Human Factors in Computing Systems (CHI) 26, 2 (1994), 34–40.

[13] André N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and
Thomas Fritz. 2017. The Work Life of Developers: Activities, Switches and
Perceived Productivity. IEEE Transactions on Software Engineering (TSE) 43, 12
(2017), 1178–1193.

[14] André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann. 2014.
Software Developers’ Perceptions of Productivity. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). ACM, 19–29.

[15] Jean E. Sammet. 1966. Survey of Formula Manipulation. Communications of the
ACM (CACM) 9, 8 (1966), 555–569.

[16] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Pro-
ductivity One Bot at a Time. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE). 928–931.

[17] Anselm Strauss and Juliet M. Corbin. 1998. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory. SAGE Publications.

[18] Warren Teitelman and Larry Masinter. 1981. The Interlisp Programming Environ-
ment. Computer 14, 4 (1981), 25–33.

[19] Alexander Wachtel, Jonas Klamroth, and Walter F. Tichy. 2017. Natural Language
User Interface For Software Engineering Tasks. In Proceedings of the International
Conference on Advances in Computer-Human Interactions (ACHI), Vol. 10. 34–
39.

